首页 > 教案下载 > 教案大全 > 函数数学教案(精选17篇)

函数数学教案

发布时间:2023-09-07

函数数学教案(精选17篇)

函数数学教案 篇1

  教学目标:

  知识与技能

  1、初步掌握函数概念,能判断两个变量间的关系是否可看作函数。

  2、根据两个变量间的关系式,给定其中一个量,相应地会求出另一个量的值。

  3、会对一个具体实例进行概括抽象成为数学问题。

  过程与方法

  1、通过函数概念,初步形成学生利用函数的观点认识现实世界的意识和能力。

  2、经历具体实例的抽象概括过程,进一步发展学生的抽象思维能力。

  情感与价值观

  1、经历函数概念的抽象概括过程,体会函数的模型思想。

  2、让学生主动地从事观察、操作、交流、归纳等探索活动,形成自己对数学知识的理解和有效的学习模式。

  教学重点:

  1、掌握函数概念。

  2、判断两个变量之间的关系是否可看作函数。

  3、能把实际问题抽象概括为函数问题。

  教学难点:

  1、理解函数的概念。

  2、能把实际问题抽象概括为函数问题。

  教学过程设计:

  一、创设问题情境,导入新课

  『师』:同学们,你们看下图上面那个像车轮状的物体是什么?

函数数学教案 篇2

  目标:

  (1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

  (2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯

  重点难点:

  能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

  过程:

  一、试一试

  1.设矩形花圃的垂直于墙的一边AB的长为xm,先取x的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2.试将计算结果填写在下表的空格 中,

  AB长x(m)123456789

  BC长(m)12

  面积y(m2)48

  2.x的值是否可以任意取?有限定范围吗?

  3.我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定, y是x的函数,试写出这个函数的关系式,

  对于1.,可让学生根据表中给出的AB的长,填出相应的BC的长和面积,然后引导学生观察表格中数据的变化情况,提出问题:(1)从所填表格中,你能发现什么?(2)对前面提出的问题的解答能作出什么猜想?让学生思考、交流、发表意见,达成共识:当AB的长为5cm,BC的长为10m时,围成的矩形面积最大;最大面积为50m2。

  对于2,可让学生分组讨论、交流,然后各组派代表发表意见。形成共识,x的值不可以任意取,有限定范围,其范围是0 <x <10。

  对于3,教师可提出问题,(1)当AB=xm时,BC长等于多少m?(2)面积y等于多少?并指出y=x(20-2x)(0 <x <10)就是所求的函数关系式.

  二、提出问题

  某商店将每 件进价为8元的某种商品按每件10元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。将这种商品的售价降低多少时,能使销售利润最大?

  在这个问题中,可提出如下问题供学生思考并 回答:

  1.商品的利润与售价、进价以及销售量之间有什么关系?

  2.如果不降低售价,该商品每件利润是多少元?一天总的利润是多 少元?

  3.若每件商品降价x元,则每件商品的利润是多少元?一天可销售约多少件商品?

  4.x的值是否可以任意取?如果不能任意取,请求出它的范围,

  5.若设该商品每天的利润为y元,求y与x的函数关系式。

  将函数关系式y=x(20-2x)(0 <x <10=化为:

  y=-2x2+20x (0<x<10)……………………………(1)

  将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为:

  y =-100x2+100x+20D (0≤x≤2)……………………(2)

  三、观察;概括

  1.教师引导学生观察函数关系式(1)和(2),提出以下问题让学生思考回答;

  (1)函数关系式(1)和(2)的自变量各有几个?

  (各有1个)

  (2)多项式-2x2+20和-100x2+100x+200分别是几次多项式?

  (分别是二次多项式 )

  (3)函数关系式(1)和(2)有什么共同特点?

  (都是用自变量的二次多项式来表示的)

  (4)本章导图中的问题以及P1页的问题2有什么共同特点 ?

  让学生讨论、交流,发表意见,归结为:自变量x为何值时,函数y取得最大值。

  2.二次函数定义:形如y=ax2+bx+c (a、b、c是常数,a≠0)的函数叫做x的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.

  四、课堂练习

  1.(口答)下列函数中,哪些是二次函数?

  (1)y= 5x+1 (2)y=4x2-1

  (3)y=2x3-3x2 (4)y=5x4-3x+1

  2.P3练习第1,2题。

  五、小结

  1.请叙述二次函数的定义.

  2,许多实际问题可以转化为二次函数来解决,请你联系生活实 际,编一道二次函数应用题,并写出函数关系式。

函数数学教案 篇3

  知识目标:理解函数的概念,能准确识别出函数关系中的自变量和函数

  能力目标:会用变化的量描述事物

  情感目标:回用运动的观点观察事物,分析事物

  重点:函数的概念

  难点:函数的概念

  教学媒体:多媒体电脑,计算器

  教学说明:注意区分函数与非函数的关系,学会确定自变量的取值范围

  教学设计

  引入:

  信息1:小明在14岁生日时,看到他爸爸为他记录的以前各年周岁时体重数值表,你能看出小明各周岁时体重是如何变化的吗?

  新课:

  问题:(1)如图是某日的气温变化图。

  ① 这张图告诉我们哪些信息?

  ② 这张图是怎样来展示这天各时刻的温度和刻画这铁的气温变化规律的?

  (2)收音机上的刻度盘的波长和频率分别是用米(m)和赫兹(KHz)为单位标刻的,下表中是一些对应的数:

  ① 这表告诉我们哪些信息?

  ② 这张表是怎样刻画波长和频率之间的变化规律的,你能用一个表达式表示出来吗?

  一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有惟一确定的值与其对应,那么我们就说x是自变量,y是x的函数。如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值。

  范例:例1 判断下列变量之间是不是函数关系:

  (5) 长方形的宽一定时,其长与面积;

  (6) 等腰三角形的底边长与面积;

  (7) 某人的年龄与身高;

  活动1:阅读教材7页观察1. 后完成教材8页探究,利用计算器发现变量和函数的关系

  思考:自变量是否可以任意取值

  例2 一辆汽车的油箱中现有汽油50L,如果不再加油,那么油箱中的油量y(单位:L)随行驶里程x(单位:km)的增加而减少,平均耗油量为0.1L/km。

  (1) 写出表示y与x的函数关系式.

  (2) 指出自变量x的取值范围.

  (3) 汽车行驶200km时,油箱中还有多少汽油?

  解:(1)y=50-0.1x

  (2)0500

  (3)x=200,y=30

  活动2:练习教材9页练习

  小结:(1)函数概念

  (2)自变量,函数值

  (3)自变量的取值范围确定

  作业:18页:2,3,4题

函数数学教案 篇4

  一、方程的根与函数的零点

  1、函数零点的概念:对于函数y=f(x),使f(x)=0 的实数x叫做函数的零点。(实质上是函数y=f(x)与x轴交点的横坐标)

  2、函数零点的意义:方程f(x)=0 有实数根函数y=f(x)的图象与x轴有交点函数y=f(x)有零点

  3、零点定理:函数y=f(x)在区间[a,b]上的图象是连续不断的,并且有f(a)f(b)0,那么函数y=f(x)在区间(a,b)至少有一个零点c,使得f( c)=0,此时c也是方程 f(x)=0 的根。

  4、函数零点的求法:求函数y=f(x)的零点:

  (1) (代数法)求方程f(x)=0 的实数根;

  (2) (几何法)对于不能用求根公式的方程,可以将它与函数y=f(x)的图象联系起来,并利用函数的性质找出零点.

  5、二次函数的零点:二次函数f(x)=ax2+bx+c(a≠0).

  1)△0,方程f(x)=0有两不等实根,二次函数的图象与x轴有两个交点,二次函数有两个零点.

  2)△=0,方程f(x)=0有两相等实根(二重根),二次函数的图象与x轴有一个交点,二次函数有一个二重零点或二阶零点.

  3)△0,方程f(x)=0无实根,二次函数的图象与x轴无交点,二次函数无零点.

  二、二分法

  1、概念:对于在区间[a,b]上连续不断且f(a)f(b)0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法。

  2、用二分法求方程近似解的步骤:

  ⑴确定区间[a,b],验证f(a)f(b)0,给定精确度ε;

  ⑵求区间(a,b)的中点c;

  ⑶计算f(c),

  ①若f(c)=0,则c就是函数的零点;

  ②若f(a)f(c)0,则令b=c(此时零点x0∈(a,c))

  ③若f(c)f(b)0,则令a=c(此时零点x0∈(c,b))

  (4)判断是否达到精确度ε:即若|a-b|ε,则得到零点近似值为a(或b);否则重复⑵~⑷

  三、函数的应用:

  (1)评价模型: 给定模型利用学过的知识解模型验证是否符合实际情况。

  (2)几个增长函数模型:一次函数:y=ax+b(a0)

  指数函数:y=ax(a1) 指数型函数: y=kax(k1)

  幂函数: y=xn( nN*) 对数函数:y=logax(a1)

  二次函数:y=ax2+bx+c(a0)

  增长快慢:V(ax)V(xn)V(logax)

  解不等式 (1) log2x x2 (2) log2x 2x

  (3)分段函数的应用:注意端点不能重复取,求函数值先判断自变量所在的区间。

  (4)二次函数模型: y=ax2+bx+c(a≠0) 先求函数的定义域,在求函数的对称轴,看它在不在定义域内,在的话代进求出最值,不在的话,将定义域内离对称轴最近的点代进求最值。

  (5)数学建模:

函数数学教案 篇5

  【教学目标:】

  1.通过对初中锐角三角函数定义的回忆,掌握任意角三角函数的定义法,并掌握用单位圆中的有向线段表示三角函数值.

  2.掌握已知角 终边上一点坐标,求四个三角函数值.(即给角求值问题)

  【教学重点:】

  任意角的三角函数的定义.

  【教学难点:】

  任意角的三角函数的定义,正弦、余弦、正切这三种三角函数的几何表示.

  【教学用具:】

  直尺、圆规、投影仪.

  【教学步骤:】

  1.设置情境

  角的范围已经推广,那么对任一角 是否也能像锐角一样定义其四种三角函数呢?本节课就来讨论这一问题.

  2.探索研究

  (1)复习回忆锐角三角函数

  我们已经学习过锐角三角函数,知道它们都是以锐角 为自变量,以比值为函数值,定义了角 的正弦、余弦、正切、余切的三角函数,本节课我们研究当角 是一个任意角时,其三角函数的定义及其几何表示.

  (2)任意角的三角函数定义

  如图1,设 是任意角, 的终边上任意一点 的坐标是 ,当角 在第一、二、三、四象限时的情形,它与原点的距离为 ,则 .

  定义:①比值 叫做 的正弦,记作 ,即 .

  ②比值 叫做 的余弦,记作 ,即 .

  图1

  ③比值 叫做 的正切,记作 ,即 .

  同时提供显示任意角的三角函数所在象限的课件

  提问:对于确定的角 ,这三个比值的大小和 点在角 的终边上的位置是否有关呢?

  利用三角形相似的知识,可以得出对于角 ,这三个比值的大小与 点在角 的终边上的位置无关,只与角 的大小有关.

  请同学们观察当 时, 的终边在 轴上,此时终边上任一点 的横坐标 都等于0,所以 无意义,除此之外,对于确定的角 ,上面三个比值都是惟一确定的.把上面定义中三个比的前项、后项交换,那么得到另外三个定义.

  ④比值 叫做 的余切,记作 ,则 .

  ⑤比值 叫做 的正割,记作 ,则 .

  ⑥比值 叫做 的余割,记作 ,则 .

  可以看出:当 时, 的终边在 轴上,这时 的纵坐标 都等于0,所以 与 的值不存在,当 时, 的值不存在,除此之外,对于确定的角 ,比值 , , 分别是一个确定的实数,所以我们把正弦、余弦,正切、余切,正割及余割都看成是以角为自变量,以比值为函数值的函数,以上六种函数统称三角函数.

  (3)三角函数是以实数为自变量的函数

  对于确定的角 ,如图2所示, , , 分别对应的比值各是一个确定的实数,因此,正弦,余弦,正切分别可看成从一个角的集合到一个比值的集合的映射,它们都是以角为自变量,以比值为函数值的函数,当采用弧度制来度量角时,每一个确定的角有惟一确定的弧度数,这是一个实数,所以这几种三角函数也都可以看成是以实数为自变量,以比值为函数值的函数.

  即:实数角(其弧度数等于这个实数)三角函数值(实数)

  (4)三角函数的一种几何表示

  利用单位圆有关的有向线段,作出正弦线,余弦线,正切线,如下图3.

  图3

  设任意角 的顶点在原点 ,始边与 轴的非负半轴重合,终边与单位圆相交于点 ,过 作 轴的垂线,垂足为 ;过点 作单位圆的切线,这条切线必然平行于轴,设它与角 的终边(当 为第一、四象限时)或其反向延长线(当 为第二、三象限时)相交于 ,当角 的终边不在坐标轴上时,我们把 , 都看成带有方向的线段,这种带方向的线段叫有向线段.由正弦、余弦、正切函数的定义有:

  这几条与单位圆有关的有向线段 叫做角 的正弦线、余弦线、正切线.当角 的终边在 轴上时,正弦线、正切线分别变成一个点;当角 的终边在 轴上时,余弦线变成一个点,正切线不存在.

  (5)例题讲评

函数数学教案 篇6

  一、学生起点分析

  在七年级上期学习了用字母表示数,体会了字母表示数的意义,学会了探索具体事物之间的关系和变化的规律,并用符号进行了表示;在七年级下期又学习了“变量之间的关系”,使学生在具体的情境中,体会了变量之间的相依关系的普遍性,感受了学习变量之间的关系的必要性和重要性,并且积累了一定的研究变量之间关系的一些方法和初步经验,为学习本章的函数知识奠定了一定的基础。

  二、教学任务分析

  《函数》是义务教育课程标准北师大版实验教科书八年级(上)第四章《一次函数》第一节的内容。教材中的函数是从具体实际问题的数量关系和变化规律中抽象出来的,主要是通过学生探索实际问题中存在的大量的变量之间关系,进而抽象出函数的概念。与原传统教材相比,新教材更注重感性材料,让学生分析了大量的问题,感受到在实际问题中存在两个变量,而且这两个变量之间存在一定的关系,它们的表示方式是多样地,如可以通过列表的方法表示,可以通过画图像的方法表示,还可以通过列解析式的方法表示,但都有着共性:其中一个变量依赖于另一个变量。

  本节内容是在七年级知识的基础上,继续通过对变量间的关系的考察,让学生初步体会函数的概念,为后续学习打下基础。同时,函数的学习可以使学生体会到数形结合的思想方法,感受事物是相互联系和规律的变化。一次本节课教学目标定位为:

  1、初步掌握函数概念,能判断两个变量间的关系是否可以看成函数;

  2、根据两个变量之间的关系式,给定其中一个量,相应的会求出另一个量的值;

  3、了解函数的三种表示方法。

  4、通过函数概念的学习,初步形成学生利用函数观点认识现实世界的意识和能力;

  5、在函数概念形成的过程中,培养学生联系实际、善于观察、乐于探索和勤于思考的精神

  对学生来讲本节课的难点在于对函数概念的理解;

  四、教学准备

  教具:教材,课件,电脑

  学具:教材,笔,练习本

  五、教学过程设计

  本节课设计了六个教学环节:第一环节:创设情境、导入新课;第二环节:展现背景,提供概念抽象的素材;第三环节:概念的抽象;第四环节:概念辨析与巩固;第五环节:课时小结;第六环节:布置作业

  第一环节:创设情境、导入新课

  内容:

  展示一些与学生实际生活有关的图片,如心电图片,天气随时间的变化图片,抛掷铅球球形成的轨迹,k线图等,提请学生思考问题。

  意图:

  承接上一学期变量关系的学习,让学生感受到变量之间关系的是通过多种形式表现出来的,感受研究函数的必要性。

  效果:

  生活实例,激发了学生的研究热情,起到很好的导入效果。

  第二环节:展现背景,提供概念抽象的素材

  内容:

  问题1、你去过游乐园吗?你坐过摩天轮吗?你能描述一下坐摩天轮的感觉吗?

  当人坐在摩天轮上时,人的高度随时间在变化,那么变化有规律吗?

  摩天轮上一点的高度h与旋转时间t之间有一定的关系,右图就反映了时间t(分)与摩天轮上一点的高度h(米)之间的关系。你能从上图观察出,有几个变化的量吗?当t分别取3,6,10时,相应的h是多少?给定一个t值,你都能找到相应的h值吗?

  问题2、瓶子或罐头盒等圆柱形的物体,常常如下图这样堆放。随着层数的增加,物体的总数是如何变化的?

  问题3、一定质量的气体在体积不变时,假若温度降低到—273℃,则气体的压强为零。因此,物理学把—273℃作为热力学温度的零度。热力学温度T(K)与摄氏温度t(℃)之间有如下数量关系:T=t+273,T≥0。

  (1)当t分别等于—43,—27,0,18时,相应的热力学温度T是多少?

  (2)给定一个大于—273℃的t值,你能求出相应的T值吗?

  意图:

  通过上面三个问题的展示,使学生们初步感受到:现实生活中存在大量的变量间的关系,并且一个变量是随着另一个变量的变化而变化的;变量之间的关系表示方式是多样的(图象、列表和解析式等)。

  效果:

  通过图片展示和三个问题的探究,使学生感受生活中的确存在大量的两个变量之间的关系,并且这两个变量之间的关系可以通过三种不同的方式表现,初步了解三种方式表示两个变量之间关系的各自特点。

  第三环节:概念的抽象

  内容:

  1、引导学生思考以上三个问题的共同点,进而揭示出函数的概念:

  在上面的问题中,都有两个变量,给定其中一个变量(自变量)的值,相应的就确定了另一个变量(因变量)的值。

  4、1函数:同步检测

  1、张爷爷晚饭以后外出散步,碰到老邻居,交谈了一会儿,返回途中在读报栏前看了一会儿报,如图是据此情境画出的图象,请你回答下面的问题:

  (1)张爷爷是在什么地方碰到老邻居的,交谈了多长时间?

  (2)读报栏大约离家多远?

  (3)图中反映了哪些变量之间的关系?其中哪个是自变量?哪个是因变量?

函数数学教案 篇7

  本文题目:高一数学教案:对数函数及其性质

  2.2.2 对数函数及其性质(二)

  内容与解析

  (一) 内容:对数函数及其性质(二)。

  (二) 解析:从近几年高考试题看,主要考查对数函数的性质,一般综合在对数函数中考查.题型主要是选择题和填空题,命题灵活.学习本部分时,要重点掌握对数的运算性质和技巧,并熟练应用.

  一、 目标及其解析:

  (一) 教学目标

  (1) 了解对数函数在生产实际中的简单应用.进一步理解对数函数的图象和性质;

  (2) 学习反函数的概念,理解对数函数和指数函数互为反函数,能够在同一坐标上看出互为反函数的两个函数的图象性质..

  (二) 解析

  (1)在对数函数 中,底数 且 ,自变量 ,函数值 .作为对数函数的三个要点,要做到道理明白、记忆牢固、运用准确.

  (2)反函数求法:①确定原函数的值域即新函数的定义域.②把原函数y=f(x)视为方程,用y表示出x.③把x、y互换,同时标明反函数的定义域.

  二、 问题诊断分析

  在本节课的教学中,学生可能遇到的问题是不易理解反函数,熟练掌握其转化关系是学好对数函数与反函数的基础。

  三、 教学支持条件分析

  在本节课一次递推的教学中,准备使用PowerPoint 20xx。因为使用PowerPoint 20xx,有利于提供准确、最核心的文字信息,有利于帮助学生顺利抓住老师上课思路,节省老师板书时间,让学生尽快地进入对问题的分析当中。

  四、 教学过程

  问题一. 对数函数模型思想及应用:

  ① 出示例题:溶液酸碱度的测量问题:溶液酸碱度pH的计算公式 ,其中 表示溶液中氢离子的浓度,单位是摩尔/升.

  (Ⅰ)分析溶液酸碱读与溶液中氢离子浓度之间的关系?

  (Ⅱ)纯净水 摩尔/升,计算纯净水的酸碱度.

  ②讨论:抽象出的函数模型? 如何应用函数模型解决问题? 强调数学应用思想

  问题二.反函数:

  ① 引言:当一个函数是一一映射时, 可以把这个函数的因变量作为一个新函数的自变量, 而把这个函数的自变量新的函数的因变量. 我们称这两个函数为反函数(inverse function)

  ② 探究:如何由 求出x?

  ③ 分析:函数 由 解出,是把指数函数 中的自变量与因变量对调位置而得出的. 习惯上我们通常用x表示自变量,y表示函数,即写为 .

  那么我们就说指数函数 与对数函数 互为反函数

  ④ 在同一平面直角坐标系中,画出指数函数 及其反函数 图象,发现什么性质?

  ⑤ 分析:取 图象上的几个点,说出它们关于直线 的对称点的坐标,并判断它们是否在 的图象上,为什么?

  ⑥ 探究:如果 在函数 的图象上,那么P0关于直线 的对称点在函数 的图象上吗,为什么?

  由上述过程可以得到什么结论?(互为反函数的两个函数的图象关于直线 对称)

  ⑦练习:求下列函数的反函数: ;

  (师生共练 小结步骤:解x ;习惯表示;定义域)

  (二)小结:函数模型应用思想;反函数概念;阅读P84材料

  五、 目标检测

  1.(20xx全国卷Ⅱ文)函数y= (x 0)的反函数是

  A. (x 0) B. (x 0) C. (x 0) D. (x 0)

  1.B 解析:本题考查反函数概念及求法,由原函数x 0可知A、C错,原函数y 0可知D错,选B.

  2. (20xx广东卷理)若函数 是函数 的反函数,其图像经过点 ,则 ( )

  A. B. C. D.

  2. B 解析: ,代入 ,解得 ,所以 ,选B.

  3. 求函数 的反函数

  3.解析:显然y0,反解 可得, ,将x,y互换可得 .可得原函数的反函数为 .

  【总结】20xx年已经到来,新的一年数学网会为您整理更多更好的文章,希望本文高一数学教案:对数函数及其性质能给您带来帮助!

函数数学教案 篇8

  1.掌握对数函数的概念,图象和性质,且在掌握性质的基础上能进行初步的应用。

  (1) 能在指数函数及反函数的概念的基础上理解对数函数的定义,了解对底数的要求,及对定义域的要求,能利用互为反函数的两个函数图象间的关系正确描绘对数函数的图象。

  (2) 能把握指数函数与对数函数的实质去研究认识对数函数的性质,初步学会用对数函数的性质解决简单的问题。

  2.通过对数函数概念的学习,树立相互联系相互转化的观点,通过对数函数图象和性质的学习,渗透数形结合,分类讨论等思想,注重培养学生的观察,分析,归纳等逻辑思维能力。

  3.通过指数函数与对数函数在图象与性质上的对比,对学生进行对称美,简洁美等审美教育,调动学生学习数学的积极性。

  高一数学对数函数教案:教材分析

  (1) 对数函数又是函数中一类重要的基本初等函数,它是在学生已经学过对数与常用对数,反函数以及指数函数的基础上引入的。故是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解。对数函数的概念,图象与性质的学习使学生的知识体系更加完整,系统,同时又是对数和函数知识的拓展与延伸。它是解决有关自然科学领域中实际问题的重要工具,是学生今后学习对数方程,对数不等式的基础。

  (2) 本节的教学重点是理解对数函数的定义,掌握对数函数的图象性质。难点是利用指数函数的图象和性质得到对数函数的图象和性质。由于对数函数的概念是一个抽象的形式,学生不易理解,而且又是建立在指数与对数关系和反函数概念的基础上,故应成为教学的重点。

  (3) 本节课的主线是对数函数是指数函数的反函数,所有的问题都应围绕着这条主线展开。而通过互为反函数的两个函数的关系由已知函数研究未知函数的性质,这种方法是第一次使用,学生不适应,把握不住关键,所以应是本节课的难点。

  高一数学对数函数教案:教法建议

  (1) 对数函数在引入时,就应从学生熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数 的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质。

  (2) 在本节课中结合对数函数教学的特点,一定要让学生动手做,动脑想,大胆猜,要以学生的研究为主,教师只是不断地反函数这条主线引导学生思考的方向。这样既增强了学生的参与意识又教给他们思考问题的方法,获取知识的途径,使学生学有所思,思有所得,练有所获,,从而提高学习兴趣。

函数数学教案 篇9

  第一教时

  教材:

  角的概念的推广

  目的:

  要求学生掌握用“旋转”定义角的概念,并进而理解“正角”“负角”“象限角”“终边相同的角”的含义。

  过程:

  一、提出课题:“三角函数”

  回忆初中学过的“锐角三角函数”——它是利用直角三角形中两边的比值来定义的。相对于现在,我们研究的三角函数是“任意角的三角函数”,它对我们今后的学习和研究都起着十分重要的作用,并且在各门学科技术中都有广泛应用。

  二、角的概念的推广

  1.回忆:初中是任何定义角的?(从一个点出发引出的两条射线构成的几何图形)这种概念的优点是形象、直观、容易理解,但它的弊端在于“狭隘”

  2.讲解:“旋转”形成角(P4)

  突出“旋转” 注意:“顶点”“始边”“终边”

  “始边”往往合于轴正半轴

  3.“正角”与“负角”——这是由旋转的方向所决定的。

  记法:角 或 可以简记成

  4.由于用“旋转”定义角之后,角的范围大大地扩大了。

  1° 角有正负之分 如:a=210° b=-150° g=-660°

  2° 角可以任意大

  实例:体操动作:旋转2周(360°×2=720°) 3周(360°×3=1080°)

  3° 还有零角 一条射线,没有旋转

  三、关于“象限角”

  为了研究方便,我们往往在平面直角坐标系中来讨论角

  角的顶点合于坐标原点,角的始边合于 轴的正半轴,这样一来,角的终边落在第几象限,我们就说这个角是第几象限的角(角的终边落在坐标轴上,则此角不属于任何一个象限)

  例如:30° 390° -330°是第Ⅰ象限角 300° -60°是第Ⅳ象限角

  585° 1180°是第Ⅲ象限角 -20xx°是第Ⅱ象限角等

  四、关于终边相同的角

  1.观察:390°,-330°角,它们的终边都与30°角的终边相同

  2.终边相同的角都可以表示成一个0°到360°的角与 个周角的和

  390°=30°+360°

  -330°=30°-360° 30°=30°+0×360°

  1470°=30°+4×360°

  -1770°=30°-5×360°

  3.所有与a终边相同的角连同a在内可以构成一个集合

  即:任何一个与角a终边相同的角,都可以表示成角a与整数个周角的和

  4.例一 (P5 略)

  五、小结: 1° 角的概念的推广

  用“旋转”定义角 角的范围的扩大

  2°“象限角”与“终边相同的角”

  六、作业: P7 练习1、2、3、4

  习题1.4 1

函数数学教案 篇10

  一、目的要求

  1、使学生初步理解一次函数与正比例函数的概念。

  2、使学生能够根据实际问题中的条件,确定一次函数与正比例函数的解析式。

  二、内容分析

  1、初中主要是通过几种简单的函数的初步介绍来学习函数的,前面三小节,先学习函数的概念与表示法,这是为学习后面的几种具体的函数作准备的,从本节开始,将依次学习一次函数(包括正比例函数)、二次函数与反比例函数的有关知识,大体上,每种函数是按函数的解析式、图象及性质这个顺序讲述的,通过这些具体函数的学习,学生可以加深对函数意义、函数表示法的认识,并且,结合这些内容,学生还会逐步熟悉函数的知识及有关的数学思想方法在解决实际问题中的应用。

  2、旧教材在讲几个具体的函数时,是按先讲正反比例函数,后讲一次、二次函数顺序编排的,这是适当照顾了学生在小学数学中学了正反比例关系的知识,注意了中小学的衔接,新教材则是安排先学习一次函数,并且,把正比例函数作为一次函数的特例予以介绍,而最后才学习反比例函数,为什么这样安排呢?第一,这样安排,比较符合学生由易到难的认识规津,从函数角度看,一次函数的解析式、图象与性质都是比较简单的,相对来说,反比例函数就要复杂一些了,特别是,反比例函数的图象是由两条曲线组成的,先学习反比例函数难度可能要大一些。第二,把正比例函数作为一次函数的特例介绍,既可以提高学习效益,又便于学生了解正比例函数与一次函数的关系,从而,可以更好地理解这两种函数的概念、图象与性质。

  3、“函数及其图象”这一章的重点是一次函数的概念、图象和性质,一方面,在学生初次接触函数的有关内容时,一定要结合具体函数进行学习,因此,全章的主要内容,是侧重在具体函数的讲述上的。另一方面,在大纲规定的几种具体函数中,一次函数是最基本的,教科书对一次函数的讨论也比较全面。通过一次函数的学习,学生可以对函数的研究方法有一个初步的认识与了解,从而能更好地把握学习二次函数、反比例函数的学习方法。

  三、教学过程

  复习提问:

  1、什么是函数?

  2、函数有哪几种表示方法?

  3、举出几个函数的例子。

  新课讲解:

  可以选用提问时学生举出的例子,也可以直接采用教科书中的四个函数的例子。然后让学生观察这些例子(实际上均是一次函数的解析式),y=x,s=3t等。观察时,可以按下列问题引导学生思考:

  (1)这些式子表示的是什么关系?(在学生明确这些式子表示函数关系后,可指出,这是函数。)

  (2)这些函数中的自变量是什么?函数是什么?(在学生分清后,可指出,式子中等号左边的y与s是函数,等号右边是一个代数式,其中的字母x与t是自变量。)

  (3)在这些函数式中,表示函数的自变量的式子,分别是关于自变量的什么式呢?(这题牵扯到有关整式的基本概念,表示函数的自变量的式子也就是等号右边的式子,都是关于自变量的一次式。)

  (4)x的一次式的一般形式是什么?(结合一元一次方程的有关知识,可以知道,x的一次式是kx+b(k≠0)的形式。)

  由以上的层层设问,最后给出一次函数的定义。

  一般地,如果y=kx+b(k,b是常数,k≠0)那么,y叫做x的一次函数。

  对这个定义,要注意:

  (1)x是变量,k,b是常数;

  (2)k≠0(当k=0时,式子变形成y=b的形式。b是x的0次式,y=b叫做常数函数,这点,不一定向学生讲述。)

  由一次函数出发,当常数b=0时,一次函数kx+b(k≠0)就成为:y=kx(k是常数,k≠0)我们把这样的函数叫正比例函数。

  在讲述正比例函数时,首先,要注意适当复习小学学过的正比例关系,小学数学是这样陈述的:

  两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

函数数学教案 篇11

  一、教学目的

  1.使学生初步理解二次函数的概念。

  2.使学生会用描点法画二次函数y=ax2的图象。

  3.使学生结合y=ax2的图象初步理解抛物线及其有关的概念。

  二、教学重点、难点

  重点:对二次函数概念的初步理解。

  难点:会用描点法画二次函数y=ax2的图象。

  三、教学过程

  复习提问

  1.在下列函数中,哪些是一次函数?哪些是正比例函数?

  (1)y=x/4;(2)y=4/x;(3)y=2x—5;(4)y=x2—2。

  2.什么是一无二次方程?

  3.怎样用找点法画函数的图象?

  新课

  1.由具体问题引出二次函数的定义。

  (1)已知圆的面积是Scm2,圆的半径是Rcm,写出空上圆的面积S与半径R之间的函数关系式。

  (2)已知一个矩形的周长是60m,一边长是Lm,写出这个矩形的面积S(m2)与这个矩形的一边长L之间的函数关系式。

  (3)农机厂第一个月水泵的产量为50台,第三个月的产量y(台)与月平均增长率x之间的函数关系如何表示?

  解:(1)函数解析式是S=πR2;

  (2)函数析式是S=30L—L2;

  (3)函数解析式是y=50(1+x)2,即y=50x2+100x+50。

  由以上三例启发学生归纳出:

  (1)函数解析式均为整式;

  (2)处变量的最高次数是2。

  我们说三个式子都表示的是二次函数。

  一般地,如果y=ax2+bx+c(a,b,c没有限制而a≠0),那么y叫做x的二次函数,请注意这里b,c没有限制,而a≠0。

  2.画二次函数y=x2的图象。

函数数学教案 篇12

  教学目标:

  知识目标:

  1、初步掌握函数概念,能判断两个变量间的关系是否可看作函数。

  2、根据两个变量间的关系式,给定其中一个量,相应地会求出另一个量的值。

  3、会对一个具体实例进行概括抽象成为数学问题。

  能力目标:

  1、通过函数概念,初步形成学生利用函数的观点认识现实世界的意识和能力。

  2、经历具体实例的抽象概括过程,进一步发展学生的抽象思维能力。

  情感目标:

  1、经历函数概念的抽象概括过程,体会函数的模型思想。

  2、让学生主动地从事观察、操作、交流、归纳等探索活动,形成自己对数学知识的理解和有效的学习模式。

  教学重点:

  掌握函数概念。

  判断两个变量之间的关系是否可看作函数。

  能把实际问题抽象概括为函数问题。

  教学难点:

  理解函数的概念。

  能把实际问题抽象概括为函数问题。

  教学过程设计:

  一、创设问题情境,导入新课

  『师』:同学们,你们看下图上面那个像车轮状的物体是什么?

  『生』:摩天轮。

  『师』:你们坐过吗?

  ……

  『师』:当你坐在摩天轮上时,人的高度随时在变化,那么变化是否有规律呢?

  『生』:应该有规律。因为人随轮一直做圆周运动。所以人的高度过一段时间就会重复依次,即转动一圈高度就重复一次。

  『师』:分析有道理。摩天轮上一点的高度h与旋转时间t之间有一定的关系。请看下图,反映了旋转时间t(分)与摩天轮上一点的高度h(米)之间的关系。

  大家从图上可以看出,每过6分钟摩天轮就转一圈。高度h完整地变化一次。而且从图中大致可以判断给定的时间所对应的高度h。下面根据图5-1进行填表:

  t/分 0 1 2 3 4 5 …… h/米

  t/分 0 1 2 3 4 5 …… h/米 3 11 37 45 37 11 ……

  『师』:对于给定的时间t,相应的高度h确定吗?

  『生』:确定。

  『师』:在这个问题中,我们研究的对象有几个?分别是什么?

  『生』:研究的对象有两个,是时间t和高度h。

  『师』:生活中充满着许许多多变化的量,你了解这些变量之间的关系吗?如:弹簧的长度与所挂物体的质量,路程的距离与所用时间……了解这些关系,可以帮助我们更好地认识世界。下面我们就去研究一些有关变量的问题。

  二、新课学习

  做一做

  (1)瓶子或罐子盒等圆柱形的物体,常常如下图那样堆放,随着层数的增加,物体的总数是如何变化的?

  填写下表:

  层数n 1 2 3 4 5 … 物体总数y 1 3 6 10 15 … 『师』:在这个问题中的变量有几个?分别师什么?

  『生』:变量有两个,是层数与圆圈总数。

  (2)在平整的路面上,某型号汽车紧急刹车后仍将滑行S米,一般地有经验公式,其中V表示刹车前汽车的速度(单位:千米/时)

  ①计算当fenbie为50,60,100时,相应的滑行距离S是多少?

  ②给定一个V值,你能求出相应的S值吗?

  解:略

  议一议

  『师』:在上面我们研究了三个问题。下面大家探讨一下,在这三个问题中的共同点是什么?不同点又是什么?

  『生』:相同点是:这三个问题中都研究了两个变量。

  不同点是:在第一个问题中,是以图象的形式表示两个变量之间的关系;第二个问题中是以表格的形式表示两个变量间的关系;第三个问题是以关系式来表示两个变量间的关系的。

  『师』:通过对这三个问题的研究,明确“给定其中某一个变量的值,相应地就确定了另一个变量的值”这一共性。

  函数的概念

  在上面各例中,都有两个变量,给定其中某一各变量(自变量)的值,相应地就确定另一个变量(因变量)的值。

  一般地,在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。

  三、随堂练习

  书P152页 随堂练习1、2、3

  四、本课小结

  初步掌握函数的概念,能判断两个变量间的关系是否可看作函数。

  在一个函数关系式中,能识别自变量与因变量,给定自变量的值,相应地会求出函数的值。

  函数的三种表达式:

  图象;(2)表格;(3)关系式。

  五、探究活动

  为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过10吨时,水价为每吨1.2元;超过10吨时,超过的部分按每吨1.8元收费,该市某户居民5月份用水x吨(x>10),应交水费y元,请用方程的知识来求有关x和y的关系式,并判断其中一个变量是否为另一个变量的函数?

  (答案:Y=1.8x-6或)

  六、课后作业

  习题6.1

函数数学教案 篇13

  导学目标

  1. 通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义;

  2. 能够熟练应用定义判断数在某区间上的单调性;

  3. 学会运用函数图象理解和研究函数的性质.

  学习过程(预习教材P27~ P29,找出疑惑之处)

  引言:函数是描述事物运动变化规律的数学模型,那么能否发现变化中保持不变的特征呢?

  复习1:观察下列各个函数的图象.

  探讨:随x的增大, y的值有什么变化?

  复习2:画出函数 、 的图象.

  合作探究

  思考:根据 、 的图象进行讨论:随x的增大,函数值怎样变化?当x x 时,f(x )与f(x )的大小关系怎样?

  问题:一次函数、二次函数和反比例函数,在什么区间函数有怎样的增大或减小的性质?

  新知:

  反思:

  ① 图象如何表示单调增、单调减?② 所有函数是不是都具有单调性?

  ③ 函数 的单调递增区间是 ,单调递减区间是 .

  试试:如图,定义在[-5,5]上的f(x),根据图象说出单调区间及单调性.

  学习过程

  例1 根据下列函数的图象,指出它们的单调区间及单调性,并运用定义进行证明.

  (1) ; (2) .

  ﹡例2求证 的(0,1)上是减函数,在 是增函数.

  例3 判断函数 在区间 上的单调性并证明.

  课堂小结

  1. 增函数、减函数、单调区间的定义;

  2. 判断函数单调性的方法(图象法、定义法).

  3. 证明函数单调性的步骤:取值作差变形 定号下结论.

  知识拓展

  函数 的增区间有 、 ,减区间有 、 .

  学习评价

  1. 函数 的单调增区间是( )

  A. B. C. R D.不存在

  2. 如果函数 在R上单调递减,则( )

  A. B. C. D.

  3. 在区间 上为增函数的是( )

  A. B.

  C. D.

  4. 函数 的单调性是 .

  5. 函数 的单调递增区间是 ,单调递减区间是 .

  课后作业

  1. 讨论 的单调性并证明.

  2. 讨论 的单调性.

  3. 指出下列函数的单调区间及单调性.

  (1) ; (2) .

  4. 证明函数 在定义域上是减函数。

  5. 证明: 在 上是减函数。

  6. 已知函数 在 上为增函数,且 ,试判断 在 上的单调性并给出证明过程。

  7. 作出函数 的图像,并指出函数 的单调区间。

  8. 已知函数 在 上是增函数,求实数 的取值范围。

函数数学教案 篇14

  教学目标

  (一)知道函数图象的意义;

  (二)能画出简单函数的图象,会列表、描点、连线;

  (三)能从图象上由自变量的值求出对应的函数的近似值。

  教学重点和难点

  重点:认识函数图象的意义,会对简单的函数列表、描点、连线画出函数图象。

  难点:对已恬图象能读图、识图,从图象解释函数变化关系。

  教学过程设计

  (一)复习

  1.什么叫函数?

  2.什么叫平面直角坐标系?

  3.在坐标平面内,什么叫点的横坐标?什么叫点的纵坐标?

  4.如果点A的横坐标为3,纵坐标为5,请用记号表示A(3,5).

  5.请在坐标平面内画出A点。

  6.如果已知一个点的坐标,可在坐标平面内画出几个点?反过来,如果坐标平面内的一个点确定,这个点的坐标有几个?这样的点和坐标的对应关系,叫做什么对应?(答:叫做坐标平面内的点与有序实数对一一对应)

  (二)新课

  我们在前几节课已经知道,函数关系可以用解析式表示,像y=2x+1就表示以x 为自变量时,y是x的函数。

  这个函数关系中,y与x的函数。

  这个函数关系中,y与x的对应关系,我们还可通知在坐标平面内画出图象的方法来表示。

函数数学教案 篇15

  三角函数的诱导公式

  一、指导思想与理论依据

  数学是一门培养人的思维,发展人的思维的重要学科。因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。因此本节课我以建构主义的“创设问题情境——提出数学问题——尝试解决问题——验证解决方法”为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。在教学手段上,则采用多媒体辅助教学,将抽象问题形象化,使教学目标体现的更加完美。

  二.教材分析

  三角函数的诱导公式是普通高中课程标准实验教科书(人教a版)数学必修四,第一章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六).本节是第一课时,教学内容为公式(二)、(三)、(四).教材要求通过学生在已经掌握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发现任意角 与终边的对称关系,发现他们与单位圆的交点坐标之间关系,进而发现他们的三角函数值的关系,即发现、掌握、应用三角函数的诱导公式公式(二)、(三)、(四).同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求.为此本节内容在三角函数中占有非常重要的地位.

  三.学情分析

  本节课的授课对象是本校高一(1)班全体同学,本班学生水平处于中等偏下,但本班学生具有善于动手的良好学习习惯,所以采用发现的教学方法应该能轻松的完成本节课的教学内容.

  四.教学目标

  (1).基础知识目标:理解诱导公式的发现过程,掌握正弦、余弦、正切的诱导公式;

  (2).能力训练目标:能正确运用诱导公式求任意角的正弦、余弦、正切值,以及进行简单的三角函数求值与化简;

  (3).创新素质目标:通过对公式的推导和运用,提高三角恒等变形的能力和渗透化归、数形结合的数学思想,提高学生分析问题、解决问题的能力;

  (4).个性品质目标:通过诱导公式的学习和应用,感受事物之间的普通联系规律,运用化归等数学思想方法,揭示事物的本质属性,培养学生的唯物史观.

  五.教学重点和难点

  1.教学重点

  理解并掌握诱导公式.

  2.教学难点

  正确运用诱导公式,求三角函数值,化简三角函数式.

  六.教法学法以及预期效果分析

  “授人以鱼不如授之以鱼”, 作为一名老师,我们不仅要传授给学生数学知识,更重要的是传授给学生数学思想方法, 如何实现这一目的,要求我们每一位教者苦心钻研、认真探究.下面我从教法、学法、预期效果等三个方面做如下分析.

  1.教法

  数学教学是数学思维活动的教学,而不仅仅是数学活动的结果,数学学习的目的不仅仅是为了获得数学知识,更主要作用是为了训练人的思维技能,提高人的思维品质.

  在本节课的教学过程中,本人以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发引导、共同探究、综合应用等教学模式,还给学生“时间”、“空间”, 由易到难,由特殊到一般,尽力营造轻松的学习环境,让学生体味学习的快乐和成功的喜悦.

  2.学法

  “现代的文盲不是不识字的人,而是没有掌握学习方法的人”,很多课堂教学常常以高起点、大容量、快推进的做法,以便教给学生更多的知识点,却忽略了学生接受知识需要时间消化,进而泯灭了学生学习的兴趣与热情.如何能让学生最大程度的消化知识,提高学习热情是教者必须思考的问题.

  在本节课的教学过程中,本人引导学生的学法为思考问题 共同探讨 解决问题 简单应用 重现探索过程 练习巩固.让学生参与探索的全部过程,让学生在获取新知识及解决问题的方法后,合作交流、共同探索,使之由被动学习转化为主动的自主学习.

  3.预期效果

  本节课预期让学生能正确理解诱导公式的发现、证明过程,掌握诱导公式,并能熟练应用诱导公式了解一些简单的化简问题.

  七.教学流程设计

  (一)创设情景

  1.复习锐角300,450,600的三角函数值;

  2.复习任意角的三角函数定义;

  3.问题:由 ,你能否知道sin2100的值吗?引如新课.

  设计意图

  自信的鼓励是增强学生学习数学的自信,简单易做的题加强了每个学生学习的热情,具体数据问题的出现,让学生既有好像会做的心理但又有迷惑的茫然,去发掘潜力期待寻找机会证明我能行,从而思考解决的办法.

  (二)新知探究

  1. 让学生发现300角的终边与2100角的终边之间有什么关系;

  2.让学生发现300角的终边和2100角的终边与单位圆的交点为 、 的坐标有什么关系;

  3.sin2100与sin300之间有什么关系.

  设计意图

  由特殊问题的引入,使学生容易了解,实现教学过程的平淡过度,为同学们探究发现任意角 与 的三角函数值的关系做好铺垫.

  (三)问题一般化

函数数学教案 篇16

  I.定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:

  y=ax^2+bx+c

  (a,b,c为常数,a0,且a决定函数的开口方向,a0时,开口方向向上,a0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)

  则称y为x的二次函数。

  二次函数表达式的右边通常为二次三项式。

  II.二次函数的三种表达式一般式:y=ax^2+bx+c(a,b,c为常数,a0)

  顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]

  交点式:y=a(x-x?)(x-x?)[仅限于与x轴有交点A(x?,0)和B(x?,0)的抛物线]

  注:在3种形式的互相转化中,有如下关系:

  h=-b/2ak=(4ac-b^2)/4ax?,x?=(-bb^2-4ac)/2a

  III.二次函数的图像在平面直角坐标系中作出二次函数y=x^2的图像,

  可以看出,二次函数的图像是一条抛物线。

函数数学教案 篇17

  〖大纲要求〗

  1. 理解二次函数的概念;

  2. 会把二次函数的一般式化为顶点式,确定图象的顶点坐标、对称轴和开口方向,会用描点法画二次函数的图象;

  3. 会平移二次函数y=ax2(a≠0)的图象得到二次函数y=a(ax+m)2+k的图象,了解特殊与一般相互联系和转化的思想;

  4. 会用待定系数法求二次函数的解析式;

  5. 利用二次函数的图象,了解二次函数的增减性,会求二次函数的图象与x轴的交点坐标和函数的最大值、最小值,了解二次函数与一元二次方程和不等式之间的联系,数学教案-二次函数。

  内容

  (1)二次函数及其图象

  如果y=ax2+bx+c(a,b,c是常数,a≠0),那么,y叫做x的二次函数。

  二次函数的图象是抛物线,可用描点法画出二次函数的图象。

  (2)抛物线的顶点、对称轴和开口方向

  抛物线y=ax2+bx+c(a≠0)的顶点是 (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限

  20.某幢建筑物,从10米高的窗口A用水管和向外喷水,喷的水流呈抛物线(抛物线所在平面与墙面垂直,(如图)如果抛物线的最高点M离墙1米,离地面米,则水流下落点B离墙距离OB是( )

  (A)2米 (B)3米 (C)4米 (D)5米

  三.解答下列各题(21题6分,22----25每题4分,26-----28每题6分,共40分)

  21.已知:直线y=x+k过点A(4,-3)。(1)求k的值;(2)判断点B(-2,-6)是否在这条直线上;(3)指出这条直线不过哪个象限。

  22.已知抛物线经过A(0,3),B(4,6)两点,对称轴为x=,

  (1) 求这条抛物线的解析式;

  (2) 试证明这条抛物线与X轴的两个交点中,必有一点C,使得对于x轴上任意一点D都有AC+BC≤AD+BD。

  23.已知:金属棒的长1是温度t的一次函数,现有一根金属棒,在O℃时长度为200cm,温度提高1℃,它就伸长0.002cm。

  (1) 求这根金属棒长度l与温度t的函数关系式;

  (2) 当温度为100℃时,求这根金属棒的长度;

  (3) 当这根金属棒加热后长度伸长到201.6cm时,求这时金属棒的温度。

  24.已知x1,x2,是关于x的方程x2-3x+m=0的两个不同的实数根,设s=x12+x22

  (1) 求S关于m的解析式;并求m的取值范围;

  (2) 当函数值s=7时,求x13+8x2的值;

  25.已知抛物线y=x2-(a+2)x+9顶点在坐标轴上,求a的值。

  26、如图,在直角梯形ABCD中,∠A=∠D=Rt∠,截取AE=BF=DG=x,已知AB=6,CD=3,AD=4,求:

  (1) 四边形CGEF的面积S关于x的函数表达式和X的取值范围;

  (2) 当x为何值时,S的数值是x的4倍。

  27、国家对某种产品的税收标准原定每销售100元需缴税8元(即税率为8%),台洲经济开发区某工厂计划销售这种产品m吨,每吨2000元。国家为了减轻工人负担,将税收调整为每100元缴税(8-x)元(即税率为(8-x)%),这样工厂扩大了生产,实际销售比原计划增加2x%。

  (1) 写出调整后税款y(元)与x的函数关系式,指出x的取值范围;

  (2) 要使调整后税款等于原计划税款(销售m吨,税率为8%)的78%,求x的值.

  28、已知抛物线y=x2+(2-m)x-2m(m≠2)与y轴的交点为A,与x轴的交点为B,C(B点在C点左边)

  (1) 写出A,B,C三点的坐标;

  (2) 设m=a2-2a+4试问是否存在实数a,使△ABC为Rt△?若存在,求出a的值,若不存在,请说明理由;

  (3) 设m=a2-2a+4,当∠BAC最大时,求实数a的值。

  习题2:

  一.填空(20分)

  1.二次函数=2(x - )2 +1图象的对称轴是 。

  2.函数y= 的自变量的取值范围是 。

  3.若一次函数y=(m-3)x+m+1的图象过一、二、四象限,则的取值范围是 。

  4.已知关于的二次函数图象顶点(1,-1),且图象过点(0,-3),则这个二次函数解析式为 。

  5.若y与x2成反比例,位于第四象限的一点P(a,b)在这个函数图象上,且a,b是方程x2-x -12=0的两根,则这个函数的关系式 。

  6.已知点P(1,a)在反比例函数y= (k≠0)的图象上,其中a=m2+2m+3(m为实数),则这个函数图象在第 象限。

  7. x,y满足等式x= ,把y写成x的函数 ,其中自变量x的取值范围是 。

  8.二次函数y=ax2+bx+c+(a 0)的图象如图,则点P(2a-3,b+2)

  在坐标系中位于第 象限

  9.二次函数y=(x-1)2+(x-3)2,当x= 时,达到最小值 。

  10.抛物线y=x2-(2m-1)x- 6m与x轴交于(x1,0)和(x2,0)两点,已知x1x2=x1+x2+49,要使抛物线经过原点,应将它向右平移 个单位。

  二.选择题(30分)

  11.抛物线y=x2+6x+8与y轴交点坐标( )

  (A)(0,8) (B)(0,-8) (C)(0,6) (D)(-2,0)(-4,0)

  12.抛物线y=- (x+1)2+3的顶点坐标( )

  (A)(1,3) (B)(1,-3) (C)(-1,-3) (D)(-1,3)

  13.如图,如果函数y=kx+b的图象在第一、二、三象限,那么函数y=kx2+bx-1的图象大致是( )

  14.函数y= 的自变量x的取值范围是( )

  (A)x 2 (B)x- 2且x 1 (D)x 2且x –1

  Ⅱ)当a>1时,函数y=logax在(0,+∞)上是增函数,

  ∵5。10,lnЛ>0,logЛ0。51,log0。50。6log0。2(3x+3)

  师:如何来求⑴中函数的定义域?(提示:求函数的定义域,就是要

  使函数有意义。若函数中含有分母,分母不为零;有偶次根式,

  被开方式大于或等于零;若函数中有对数的形式,则真数大于

  零,如果函数中同时出现以上几种情况,就要全部考虑进去,求

  它们共同作用的结果。)

  生:分母2x-1≠0且偶次根式的被开方式log0。8x-1≥0,且真数x>0。

  板书:

  解:∵ 2x-1≠0 x≠0。5

  log0。8x-1≥0 , x≤0。8

  x>0 x>0

  ∴x(0,0。5)∪(0。5,0。8〕

  师:接下来我们一起来解这个不等式。

  分析:要解这个不等式,首先要使这个不等式有意义,即真数大于零,

  再根据对数函数的单调性求解。

  师:请你写一下这道题的解题过程。

  生:

  解: x2+2x-3>0 x1

  (3x+3)>0 , x>-1

  x2+2x-30,a≠1)

  ①求它的单调区间;②当00, b>0, 且 a≠1)

  ①求它的定义域;②讨论它的奇偶性;

  ③讨论它的单调性。

  ⑷已知函数y=loga(ax-1) (a>0,a≠1),

  ①求它的定义域;

  ②当x为何值时,函数值大于1;

  ③讨论它的单调性。

函数数学教案(精选17篇) 相关内容:
  • 《EXCEL中函数公式的运用》教学设计

    张宝玉[课 题] 《excel中函数公式的运用》[教 材] 海南出版社、三环出版社出版的《信息技术》七年级下册第二章第四节中第三个知识点的内容[课 型] 新授课[课 时] 1课时[教材分析]本节课的内容是函数和公式在excel中的使用,教材从实际生活...

  • 函数的最大值和最小值教案

    1.本节教材的地位与作用 本节主要研究闭区间上的连续函数最大值和最小值的求法和实际应用,分两课时,这里是第一课时,它是在学生已经会求某些函数的最值,并且已经掌握了性质:“如果f(x)是闭区间[a,b]上的连续函数,那么f(x)在闭区间[a,b]上有...

  • 2.4反函数(三课时)

    教学目的:1.掌握反函数的概念和表示法,会求一个函数的反函数 2.互为反函数的图象间的关系. 3.反函数性质的应用.教学重点:反函数的定义和求法,互为反函数的图象间的关系.教学难点:反函数的定义,反函数性质的应用.教学过程:第一课时...

  • 4.9函数y=Asin(ωx+φ) 的图象(3)

    教学目的:1.会用“五点法”画y=asin(ωx+ )的图象;2.会用图象变换的方法画y=asin(ωx+ )的图象;3.会求一些函数的振幅、周期、最值等.教学重点:1.“五点法”画y=asin(ωx+ )的图象;2.图象变换过程的理解;教学难点:多种变换的...

  • 4.9函数y=Asin(ωx+φ) 的图象(2)

    教学目的:1.会用“五点法”画y=asin(ωx+ )的图象;2.会用图象变换的方法画y=asin(ωx+ )的图象;3.会求一些函数的振幅、周期、最值等.教学重点:1.“五点法”画y=asin(ωx+ )的图象;2.图象变换过程的理解;3.一些相关概念.教学难...

  • 函数

    教学目标 1.理解函数的概念,了解函数的三种表示法,会求函数的定义域. (1)了解函数是非凡的映射,是非空数集a到非空数集b的映射.能理解函数是由定义域,值域,对应法则三要素构成的整体. (2)能正确熟悉和使用函数的三种表示法:解析法,列表法,...

  • 4.9函数y=Asin(ωx+φ) 的图象(5)

    教学目的:三角函数图象和性质的综合应用 教学重点、难点:三角函数图象和性质的综合应用.一、例题: 例1 (1)已知 ,且 是第一象限角,则 的集合为( ) a. b. c. d. (2)函数 的最大值与最小值依次分别为 a. b. c. d. (3)在锐角 中...

  • 4.9函数y=Asin(ωx+φ) 的图象(1)

    教学目的:1.理解振幅、周期、相位的定义;2.会用五点法画出函数y=asinx、y=asinωx和 的图象,明确a、ω与φ对函数图象的影响作用;并会由y=asinx的图象得出y=asinx`y=asinωx和 的图象。...

  • 函数及其表示、解析式(学生学案)

    知识结构:1.函数的基本概念(1)函数的定义:设a、b是非空数集,如果按照某种确定的对应关系f,使对于集合a中的任意一个数x,在集合b中都有唯一确定的数f(x)和它对应,那么称f:a→b为从集合a到集合b的一个函数,记作:y=f(x),x∈a.2.映...

  • 函数

    教学目标 1.理解函数的概念,了解函数的三种表示法,会求函数的定义域.(1)了解函数是特殊的映射,是非空数集a到非空数集b的映射.能理解函数是由定义域,值域,对应法则三要素构成的整体.(2)能正确认识和使用函数的三种表示法:解析法...

  • 4.9函数y=Asin(ωx+φ) 的图象(6)

    教学目的:三角函数图象和性质的综合应用教学重点、难点:三角函数图象和性质的综合应用.一、例题: 例1 若 ,讨论函数 的单调性;例2已知δabc三内角a,b,c成等差数列,( abc)且tana+tanc=3+ ,试求出角a、b、c的大小。...

  • 4.9函数y=Asin(ωx+φ) 的图象(4)

    教学目的:三角函数图象和性质的综合应用 教学重点、难点:三角函数图象和性质的综合应用.一、例题: 例1 θ是三角形的一个内角,且关于x 的函数f(x)=sin(x+θ)+cos(x-θ)是偶函数,求θ的值.例2 已知 ,试确定函数的奇偶性、单调性.例3...

  • 函数知识归纳

    高中1. 映射定义:设非空数集a,b,若对集合a中任一元素a,在集合b中有唯一元素b与之对应,则称从a到b的对应为映射2. 若集合a中有m个元素,集合b中有n个元素,则从a到b可建立nm个映射3.函数定义:函数就是定义在非空数集a,b上的映射,此...

  • 互为反函数的函数图象间的关系

    互为反函数的函数图象间的关系一、 教学目标1.理解并掌握互为反函数的函数图像间的关系定理,运用定理解决有关反函数的问题,深化对互为反函数本质的认识.2.运用定理画互为反函数的图像,研究互为反函数的有关性质,提高解函数综合问题的...

  • 反 函 数

    教材:人教版全日制普通高级中学教科书(必修)数学第一册(上)教学目标:1.了解反函数的概念,弄清原函数与反函数的定义域和值域的关系.2.会求一些简单函数的反函数.3.在尝试、探索求反函数的过程中,深化对概念的认识,总结出求反函数...

  • 教案大全