勾股定理教案范文(精选10篇)
勾股定理教案范文 篇1
一、教学目标
1.体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理.
2.探究勾股定理的逆定理的证明方法.
3.理解原命题、逆命题、逆定理的概念及关系.
二、重点、难点
1.重点:掌握勾股定理的逆定理及证明.
2.难点:勾股定理的逆定理的证明.
3.难点的突破方法:
先让学生动手操作,画好图形后剪下放到一起观察能否重合,激发学生的兴趣和求知欲,再探究理论证明方法.充分利用这道题锻炼学生的动手操作能力,由实践到理论学生更容易接受.
为学生搭好台阶,扫清障碍.
⑴如何判断一个三角形是直角三角形,现在只知道若有一个角是直角的三角形是直角三角形,从而将问题转化为如何判断一个角是直角.
⑵利用已知条件作一个直角三角形,再证明和原三角形全等,使问题得以解决.
⑶先做直角,再截取两直角边相等,利用勾股定理计算斜边A1B1=c,则通过三边对应相等的两个三角形全等可证.
三、课堂引入
创设情境:⑴怎样判定一个三角形是等腰三角形?
⑵怎样判定一个三角形是直角三角形?和等腰三角形的判定进行对比,从勾股定理的逆命题进行猜想.
四、例习题分析
例1(补充)说出下列命题的逆命题,这些命题的逆命题成立吗?
⑴同旁内角互补,两条直线平行.
⑵如果两个实数的平方相等,那么两个实数平方相等.
⑶线段垂直平分线上的点到线段两端点的距离相等.
⑷直角三角形中30°角所对的直角边等于斜边的一半.
分析:⑴每个命题都有逆命题,说逆命题时注意将题设和结论调换即可,但要分清题设和结论,并注意语言的运用.
⑵理顺他们之间的关系,原命题有真有假,逆命题也有真有假,可能都真,也可能一真一假,还可能都假.
解略.
本题意图在于使学生了解命题,逆命题,逆定理的概念,及它们之间的.关系.
例2(P82探究)证明:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.
分析:⑴注意命题证明的格式,首先要根据题意画出图形,然后写已知求证.
⑵如何判断一个三角形是直角三角形,现在只知道若有一个角是直角的三角形是直角三角形,从而将问题转化为如何判断一个角是直角.
⑶利用已知条件作一个直角三角形,再证明和原三角形全等,使问题得以解决.
⑷先做直角,再截取两直角边相等,利用勾股定理计算斜边A1B1=c,则通过三边对应相等的两个三角形全等可证.
⑸先让学生动手操作,画好图形后剪下放到一起观察能否重合,激发学生的兴趣和求知欲,再探究理论证明方法.充分利用这道题锻炼学生的动手操作能力,由实践到理论学生更容易接受.
证明略.
通过让学生动手操作,画好图形后剪下放到一起观察能否重合,激发学生的兴趣和求知欲,锻炼学生的动手操作能力,再通过探究理论证明方法,使实践上升到理论,提高学生的理性思维.
例3(补充)已知:在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,a=n2-1,b=2n,c=n2+1(n>1)
求证:∠C=90°.
分析:⑴运用勾股定理的逆定理判定一个三角形是否是直角三角形的一般步骤:①先判断那条边最大.②分别用代数方法计算出a2+b2和c2的值.③判断a2+b2和c2是否相等,若相等,则是直角三角形;若不相等,则不是直角三角形.
⑵要证∠C=90°,只要证△ABC是直角三角形,并且c边最大.根据勾股定理的逆定理只要证明a2+b2=c2即可.
⑶由于a2+b2=(n2-1)2+(2n)2=n4+2n2+1,c2=(n2+1)2= n4+2n2+1,从而a2+b2=c2,故命题获证.
本题目的在于使学生明确运用勾股定理的逆定理判定一个三角形是否是直角三角形的一般步骤:①先判断那条边最大.②分别用代数方法计算出a2+b2和c2的值.③判断a2+b2和c2是否相等,若相等,则是直角三角形;若不相等,则不是直角三角形.
勾股定理教案范文 篇2
复习第一步::
勾股定理的有关计算
例1:(20xx年甘肃省定西市中考题)下图阴影部分是一个正方形,则此正方形的面积为.
析解:图中阴影是一个正方形,面积正好是直角三角形一条直角边的平方,因此由勾股定理得正方形边长平方为:172-152=64,故正方形面积为6
勾股定理解实际问题
例2.(20xx年吉林省中考试题)图①是一面矩形彩旗完全展平时的尺寸图(单位:cm).其中矩形ABCD是由双层白布缝制的穿旗杆用的旗裤,阴影部分DCEF为矩形绸缎旗面,将穿好彩旗的旗杆垂直插在操场上,旗杆旗顶到地面的高度为220cm.在无风的天气里,彩旗自然下垂,如图②.求彩旗下垂时最低处离地面的最小高度h.
析解:彩旗自然下垂的长度就是矩形DCEF
的对角线DE的长度,连接DE,在Rt△DEF中,根据勾股定理,
得DE=h=220-150=70(cm)
所以彩旗下垂时的最低处离地面的最小高度h为70cm
与展开图有关的计算
例3、(20xx年青岛市中考试题)如图,在棱长为1的正方体ABCD—A’B’C’D’的表面上,求从顶点A到顶点C’的最短距离.
析解:正方体是由平面图形折叠而成,反之,一个正方体也可以把它展开成平面图形,如图是正方体展开成平面图形的一部分,在矩形ACC’A’中,线段AC’是点A到点C’的最短距离.而在正方体中,线段AC’变成了折线,但长度没有改变,所以顶点A到顶点C’的最短距离就是在图2中线段AC’的长度.
在矩形ACC’A’中,因为AC=2,CC’=1
所以由勾股定理得AC’=.
∴从顶点A到顶点C’的最短距离为
复习第二步:
1.易错点:本节同学们的易错点是:在用勾股定理求第三边时,分不清直角三角形的斜边和直角边;另外不论是否是直角三角形就用勾股定理;为了避免这些错误的'出现,在解题中,同学们一定要找准直角边和斜边,同时要弄清楚解题中的三角形是否为直角三角形.
例4:在Rt△ABC中,a,b,c分别是三条边,∠B=90°,已知a=6,b=10,求边长c.
错解:因为a=6,b=10,根据勾股定理得c=剖析:上面解法,由于审题不仔细,忽视了∠B=90°,这一条件而导致没有分清直角三角形的斜边和直角边,错把c当成了斜边.
正解:因为a=6,b=10,根据勾股定理得,c=温馨提示:运用勾股定理时,一定分清斜边和直角边,不能机械套用c2=a2+b2
例5:已知一个Rt△ABC的两边长分别为3和4,则第三边长的平方是
错解:因为Rt△ABC的两边长分别为3和4,根据勾股定理得:第三边长的平方是32+42=25
剖析:此题并没有告诉我们已知的边长4一定是直角边,而4有可能是斜边,因此要分类讨论.
正解:当4为直角边时,根据勾股定理第三边长的平方是25;当4为斜边时,第三边长的平方为:42-32=7,因此第三边长的平方为:25或7.
温馨提示:在用勾股定理时,当斜边没有确定时,应进行分类讨论.
例6:已知a,b,c为⊿ABC三边,a=6,b=8,bc,且c为整数,则c=.
错解:由勾股定理得c=剖析:此题并没有告诉你⊿ABC为直角三角形
勾股定理教案范文 篇3
一、利用勾股定理进行计算
1.求面积
例1:如图1,在等腰△ABC中,腰长AB=10cm,底BC=16cm,试求这个三角形面积。
析解:若能求出这个等腰三角形底边上的高,就可以求出这个三角形面积。而由等腰三角形"三线合一"性质,可联想作底边上的高AD,此时D也为底边的中点,这样在Rt△ABD中,由勾股定理得AD2=AB2-BD2=102-82=36,所以AD=6cm,所以这个三角形面积为×BC×AD=×16×6=48cm2。
2.求边长
例2:如图2,在△ABC中,∠C=135?,BC=,AC=2,试求AB的长。
析解:题中没有直角三角形,不能直接用勾股定理,可考虑过点B作BD⊥AC,交AC的延长线于D点,构成Rt△CBD和Rt△ABD。在Rt△CBD中,因为∠ACB=135?,所以∠BCB=45?,所以BD=CD,由BC=,根据勾股定理得BD2+CD2=BC2,得BD=CD=1,所以AD=AC+CD=3。在Rt△ABD中,由勾股定理得AB2=AD2+BD2=32+12=10,所以AB=。
点评:这两道题有一个共同的特征,都没有现成的直角三角形,都是通过添加适当的辅助线,巧妙构造直角三角形,借助勾股定理来解决问题的,这种解决问题的方法里蕴含着数学中很重要的转化思想,请同学们要留心。
二、利用勾股定理的逆定理判断直角三角形
例3:已知a,b,c为△ABC的三边长,且满足a2+b2+c2+338=10a+24b+26c。试判断△ABC的形状。
析解:由于所给条件是关于a,b,c的一个等式,要判断△ABC的形状,设法求出式中的a,b,c的值或找出它们之间的关系(相等与否)等,因此考虑利用因式分解将所给式子进行变形。因为a2+b2+c2+338=10a+24b+26c,所以a2-10a+b2-24b+c2-26c+338=0,所以a2-10a+25+b2-24b+144+c2-26c+169=0,所以(a-5)2+(b-12)2+(c-13)2=0。因为(a-5)2≥0,(b-12)2≥0,(c-13)2≥0,所以a-5=0,b-12=0,c-13=0,即a=5,b=12,c=13。因为52+122=132,所以a2+b2=c2,即△ABC是直角三角形。
点评:用代数方法来研究几何问题是勾股定理的逆定理的"数形结合思想"的重要体现。
三、利用勾股定理说明线段平方和、差之间的.关系
例4:如图3,在△ABC中,∠C=90?,D是AC的中点,DE⊥AB于E点,试说明:BC2=BE2-AE2。
析解:由于要说明的是线段平方差问题,故可考虑利用勾股定理,注意到∠C=∠BED=∠AED=90?及CD=AD,可连结BD来解决。因为∠C=90?,所以BD2=BC2+CD2。又DE⊥AB,所以∠BED=∠AED=90?,在Rt△BED中,有BD2=BE2+DE2。在Rt△AED中,有AD2=DE2+AE2。又D是AC的中点,所以AD=CD。故BC2+CD2=BC2+AD2=BC2+DE2+AE2=BE2+DE2,所以BE2=BC2+AE2,所以BC2=BE2-AE2。
点评:若所给题目的已知或结论中含有线段的平方和或平方差关系时,则可考虑构造直角三角形,利用勾股定理来解决问题。
勾股定理教案范文 篇4
一、教学目标
1.体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理。
2.探究勾股定理的逆定理的证明方法。
3.理解原命题、逆命题、逆定理的概念及关系。
二、重点、难点
1.重点:掌握勾股定理的逆定理及证明。
2.难点:勾股定理的逆定理的证明。
3.难点的突破方法:
先让学生动手操作,画好图形后剪下放到一起观察能否重合,激发学生的兴趣和求知欲,再探究理论证明方法.充分利用这道题锻炼学生的动手操作能力,由实践到理论学生更容易接受。
为学生搭好台阶,扫清障碍。
⑴如何判断一个三角形是直角三角形,现在只知道若有一个角是直角的三角形是直角三角形,从而将问题转化为如何判断一个角是直角。
⑵利用已知条件作一个直角三角形,再证明和原三角形全等,使问题得以解决。
⑶先做直角,再截取两直角边相等,利用勾股定理计算斜边A1B1=c,则通过三边对应相等的两个三角形全等可证。
三、课堂引入
创设情境:
⑴怎样判定一个三角形是等腰三角形?
⑵怎样判定一个三角形是直角三角形?和等腰三角形的`判定进行对比,从勾股定理的逆命题进行猜想。
四、例习题分析
例1(补充)说出下列命题的逆命题,这些命题的逆命题成立吗?
⑴同旁内角互补,两条直线平行。
⑵如果两个实数的平方相等,那么两个实数平方相等。
⑶线段垂直平分线上的点到线段两端点的距离相等。
⑷直角三角形中30°角所对的直角边等于斜边的一半。
勾股定理教案范文 篇5
教学目标
1.灵活应用勾股定理及逆定理解决实际问题。
2.进一步加深性质定理与判定定理之间关系的认识。
重难点
1.重点:灵活应用勾股定理及逆定理解决实际问题。
2.难点:灵活应用勾股定理及逆定理解决实际问题。
一、自主学习
1、若三角形的三边是 ⑴1、2; ⑵; ⑶32,42,52⑷9,40,41;
⑸(m+n)2-1,2(m+n),(m+n)2+1;则构成的是直角三角形的有( )
A.2个 B.3个C.4个D.5个
2、已知:在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,分别为下列长度,判断该三角形是否是直角三角形?并指出那一个角是直角?
⑴a=9,b=41,c=40; ⑵a=15,b=16,c=6; ⑶a=2,b=,c=4;
二、交流展示
例1(P33例2)某港口P位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里,它们离开港口一个半小时后分别位于Q、R处,并相距30海里. 如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?
分析:⑴了解方位角,及方位名词;⑵依题意画出图形;⑶依题意可求PR,PQ,QR;
⑷根据勾股定理 的逆定理,求∠QPR;⑸求∠RPN。
小结:让学生养成“已知三边求角,利用勾股定理的逆定理”的意识。
例2、一根30米长的`细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,请你试判断这个三角形的形状。
分析:⑴若判断三角形的形状,先求三角形的三边长;
⑵设未知数列方程,求出三角形的三边长;
⑶根据勾股定理的逆定理,判断三角形是否为直角三角形。
三、合作探究
例3.如图,小明的爸爸在鱼池边开了一块四边形土地种了一些蔬菜,爸爸让小明计算一下土地的面积,以便计算一下产量。小明找了一卷米尺,测得AB=4米,BC=3米,CD=13米,DA=12米,又已知∠B=90°。
四、达标测试
1.一根24米绳子,折成三边为三个连续偶数的三角形,则三边长分别为,此三角形的形状为。
2.小强在操场上向东走80m后,又走了60m,再走100m回到原地。小强在操场上向东走了80m后,又走60m的方向是。
3.一根12米的电线杆AB,用铁丝AC、AD固定,现已知用去铁丝AC=15米,AD=13米,又测得地面上B、C两点之间距离是9米,B、D两点之间距离是5米,
则电线杆和地面是否垂直,为什么?
4.如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13海里的A、B两个基地前去拦截,六分钟后同时到达C地将其拦截。已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航向为北偏西40°,问:甲巡逻艇的航向?
五、教学反思
勾股定理教案范文 篇6
一、内容和内容解析
1。内容
应用勾股定理及勾股定理的逆定理解决实际问题。
2。内容解析
运用勾股定理的逆定理可以从三角形边的数量关系来识别三角形的形状,它是用代数方法来研究几何图形,也是向学生渗透“数形结合”这一数学思想方法的很好素材。综合运用勾股定理及其逆定理能帮助我们解决实际问题。
基于以上分析,可以确定本课的教学重点是灵活运用勾股定理的逆定理解决实际问题。
二、目标和目标解析
1。目标
(1)灵活应用勾股定理及逆定理解决实际问题。
(2)进一步加深性质定理与判定定理之间关系的认识。
2。目标解析
达成目标(1)的标志是学生通过合作、讨论、动手实践等方式,在应用题中建立数学模型,准确画出几何图形,再熟练运用勾股定理逆定理判断三角形状及求边长、面积、角度等;
目标(2)能先用勾股定理的逆定理判断一个三角形是直角三角形,再用勾股定理及直角三角形的性质进行有关的计算和证明。
三、教学问题诊断分析
对于大部分学生将实际问题抽象成数学模型并进行解析与应用,有一定的困难,所以在教学时应该注意启发引导学生从实际生活中所遇到的问题出发,鼓励学生以勾股定理及逆定理的知识为载体建立数学模型,利用数学模型去解决实际问题。
本课的教学难点是灵活运用勾股定理及逆定理解决实际问题。
四、教学过程设计
1。复习反思,引出课题
问题1 通过前面的学习,我们对勾股定理及其逆定理的知识有一定的了解,请说出勾股定理及其逆定理的内容。
师生活动:学生回答勾股定理的内容“如果直角三角形的两条直角边长分别为,斜边长为,那么;勾股定理的逆定理“如果三角形的三边长满足,那么这个三角形是直角三角形。
追问:你能用勾股定理及逆定理解决哪些问题?
师生活动:学生通过思考举手回答,教师板书课题。
【设计意图】通过复习勾股定理及其逆定理来引入本课时的学习任务——应用勾股定理及逆定理解决有关实际问题。
2。 点击范例,以练促思
问题2 某港口位于东西方向的海岸线上。“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里。它们离开港口一个半小时后相距30海里。如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?
师生活动:学生读题,理解题意,弄清楚已知条件和需解决的问题,教师通过梯次性问题的展示,适时点拨,学生尝试画图、估测、交流中分化难点完成解答。
追问1:请同学们认真审题,弄清已知是什么?解决的问题是什么?
师生活动:学生通过思考举手回答,教师在黑板上列出:已知两种船的航速,它们的航行时间以及相距的路程, “远航”号的航向——东北方向;解决的问题是“海天”号的`航向。
追问2:你能根据题意画出图形吗?
师生活动:学生尝试画图,教师在黑板上或多媒体中画出示意图。
追问3:在所画的图中哪个角可以表示“海天”号的航向?图中知道哪个角的度数?
师生活动:学生小组讨论交流回答问题“海天”号的航向只要能确定∠QPR的大小即可。组内讨论解答,小组代表展示解答过程,教师适时点评,多媒体展示规范解答过程。
解:根据题意,
因为
,即
,所以
由“远航”号沿东北方向航行可知
。因此
,即“海天”号沿西北方向航行。
课堂练习1。 课本33页练习第3题。
课堂练习2。 在
港有甲、乙两艘渔船,若甲船沿北偏东
方向以每小时8海里速度前进,乙船沿南偏东某方向以每小时15海里速度前进,1小时后甲船到达
岛,乙船到达
岛,且
岛与
岛相距17海里,你能知道乙船沿哪个方向航行吗?
【设计意图】学生在规范化的解答过程及练习中,提升对勾股定理逆定理的认识以及实际应用的能力。
3。 补充训练,巩固新知
问题3 实验中学有一块四边形的空地
若每平方米草皮需要200元,问学校需要投入多少资金购买草皮?
师生活动:先由学生独立思考。若学生有想法,则由学生先说思路,然后教师追问:你是怎么想到的?对学生思路中的合理成分进行总结;若学生没有思路,教师可引导学生分析:从所要求的结果出发是要知道四边形的面积,而四边形被它的一条对角线分成两个三角形,求出两个三角形的面积和即可。启发学生形成思路,最后由学生演板完成。
【设计意图】引导学生利用辅助线解决问题,进一步养成利用勾股定理的逆定理解决实际问题的意识。
4。 反思小结,观点提炼
教师引导学生参照下面两个方面,回顾本节课所学的主要内容,进行相互交流:
(1)知识总结:勾股定理以及逆定理的实际应用;
(2)方法归纳:数学建模的思想。
【设计意图】通过小结,梳理本节课所学内容,总结方法,体会思想。
5。布置作业
教科书34页习题17。2第3题,第4题,第5题,第6题。
五、目标检测设计
1。小明在学校运动会上负责联络,他先从检录处走了75米到达起点,又从起点向东走了100米到达终点,最后从终点走了125米,回到检录处,则他开始走的方向是(假设小明走的每段都是直线) ( )
A。南北 B。东西 C。东北 D。西北
【设计意图】考查运用勾股定理的逆定理解决实际生活问题。
2。甲、乙两船同时从
港出发,甲船沿北偏东
的方向,以每小时9海里的速度向
岛驶去,乙船沿另一个方向,以每小时12海里的速度向
岛驶去,3小时后两船同时到达了目的地。如果两船航行的速度不变,且
两岛相距45海里,那么乙船航行的方向是南偏东多少度?
【设计意图】考查建立数学模型,准确画出几何图形,运用勾股定理的逆定理解决实际生活问题。
3。如图是一块四边形的菜地,已知
求这块菜地的面积。
【设计意图】考查利用勾股定理及逆定理将不规则图形转化为直角三角形,巧妙地求解。
勾股定理教案范文 篇7
教学目标:
1、知识目标:
(1)掌握勾股定理;
(2)学会利用勾股定理进行计算、证明与作图;
(3)了解有关勾股定理的历史。
2、能力目标:
(1)在定理的证明中培养学生的拼图能力;
(2)通过问题的解决,提高学生的运算能力
3、情感目标:
(1)通过自主学习的发展体验获取数学知识的感受;
(2)通过有关勾股定理的历史讲解,对学生进行德育教育。
教学重点:勾股定理及其应用
教学难点:通过有关勾股定理的历史讲解,对学生进行德育教育。
教学用具:直尺,微机
教学方法:以学生为主体的讨论探索法
教学过程:
1、新课背景知识复习
(1)三角形的三边关系
(2)问题:(投影显示)
直角三角形的`三边关系,除了满足一般关系外,还有另外的特殊关系吗?
2、定理的获得
让学生用文字语言将上述问题表述出来。
勾股定理:直角三角形两直角边的平方和等于斜边的平方。
强调说明:
(1)勾――最短的边、股――较长的直角边、弦――斜边
(2)学生根据上述学习,提出自己的问题(待定)
学习完一个重要知识点,给学生留有一定的时间和机会,提出问题,然后大家共同分析讨论.
3、定理的证明方法
方法一:将四个全等的直角三角形拼成如图1所示的正方形。
方法二:将四个全等的直角三角形拼成如图2所示的正方形。
方法三:“总统”法、如图所示将两个直角三角形拼成直角梯形。
以上证明方法都由学生先分组讨论获得,教师只做指导、最后总结说明
4、定理与逆定理的应用
5、课堂小结:
(1)勾股定理的内容
(2)勾股定理的作用
已知直角三角形的两边求第三边
已知直角三角形的一边,求另两边的关系
6、布置作业:
a、书面作业P130#1、2、3
b、上交作业P132#1、3
勾股定理教案范文 篇8
教学目标
1、知识与技能目标
学会观察图形,勇于探索图形间的关系,培养学生的空间观念。
2、过程与方法
(1)经历一般规律的探索过程,发展学生的抽象思维能力。
(2)在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想。
3、情感态度与价值观
(1)通过有趣的问题提高学习数学的兴趣。
(2)在解决实际问题的过程中,体验数学学习的实用性。
教学重点:
探索、发现事物中隐含的勾股定理及其逆及理,并用它们解决生活实际问题。
教学难点:
利用数学中的.建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题。
教学准备:
多媒体
教学过程:
第一环节:创设情境,引入新课(3分钟,学生观察、猜想)
情景:
如图:在一个圆柱石凳上,若小明在吃东西时留下了一点食物在B处,恰好一只在A处的蚂蚁捕捉到这一信息,于是它想从A处爬向B处,你们想一想,蚂蚁怎么走最近?
第二环节:合作探究(15分钟,学生分组合作探究)
学生分为4人活动小组,合作探究蚂蚁爬行的最短路线,充分讨论后,汇总各小组的方案,在全班范围内讨论每种方案的路线计算方法,通过具体计算,总结出最短路线。让学生发现:沿圆柱体母线剪开后展开得到矩形,研究“蚂蚁怎么走最近”就是研究两点连线最短问题,引导学生体会利用数学解决实际问题的方法:建立数学模型,构图,计算。
第三环节:做一做(7分钟,学生合作探究)
教材23页
李叔叔想要检测雕塑底座正面的AD边和BC边是否分别垂直于底边AB,但他随身只带了卷尺。
(1)你能替他想办法完成任务吗?
(2)李叔叔量得AD长是30厘米,AB长是40厘米,BD长是50厘米,AD边垂直于AB边吗?为什么?
(3)小明随身只有一个长度为20厘米的刻度尺,他能有办法检验AD边是否垂直于AB边吗?BC边与AB边呢?
第四环节:巩固练习(10分钟,学生独立完成)
1.甲、乙两位探险者到沙漠进行探险,某日早晨8:00甲先出发,他以6/h的速度向正东行走,1小时后乙出发,他以5/h的速度向正北行走.上午10:00, 甲、乙两人相距多远?
2.如图,台阶A处的蚂蚁要爬到B处搬运食物,它怎么走最近?并求出最近距离。
3.有一个高为1、5米,半径是1米的圆柱形油桶,在靠近边的地方有一小孔,从孔中插入一铁棒,已知铁棒在油桶外的部分为0、5米,问这根铁棒有多长?
第五环节课堂小结(3分钟,师生问答)
内容:如何利用勾股定理及逆定理解决最短路程问题?
第六环节:布置作业(2分钟,学生分别记录)
作业:1.课本习题1.5第1,2,3题.
要求:A组(学优生):1、2、3
B组(中等生):1、2
C组(后三分之一生):1
勾股定理教案范文 篇9
教学目标
知识与技能:
了解勾股定理的一些证明方法,会简单应用勾股定理解决问题
过程与方法:
在充分观察、归纳、猜想的基础上,探究勾股定理,在探究的过程中,发展合情推理,体会数形结合、从特殊到一般等数学思想。
情感态度价值观:
通过对我国古代研究勾股定理的成就介绍,培养学生的民族自豪感。
教学过程
1、创设情境
问题1国际数学家大会是最高水平的全球性数学学科学术会议,被誉为数学界的“奥运会”。20__年在北京召开了第24届国际数学家大会。下图就是大会会徽的图案。你见过这个图案吗?它由哪些我们学习过的基本图形组成?这个图案有什么特别的含义?
师生活动:教师引导学生寻找图形中的直角三角形和正方形等,并引导学生发现直角三角形的全等关系,指出通过今天的学习,就能理解会徽图案的含义。
设计意图:本节课是本章的起始课,重视引言教学,从国际数学家大会的会徽说起,设置悬念,引入课题。
2、探究勾股定理
观看洋葱数学中关于勾股定理引入的视频,让我们一起走进神奇的数学世界
问题2相传2500多年前,毕达哥拉斯有一次在朋友家作客时,发现朋友家用转铺成的地面图案反应了直角三角形三边的某种数量关系,请你观察下图,你从中发现了什么数量关系?
师生活动:学生先独立观察思考一分钟后,小组交流合作分析图形中两个蓝色正方形与橙色正方形有哪些数量关系,教师参与学生的讨论
追问:由这三个正方形的边长构成的等腰直角三角形三条边长之间又有怎么样的关系?
师生活动:教师引导学生发现正方形的面积等于边长的平方,归纳出:等腰直角三角形两条直角边的平方和等于斜边的平方。
设计意图:从最特殊的等腰直角三角形入手,便于学生观察得到结论
问题3:数学研究遵循从特殊到一般的数学思想,既然我们得到了等腰直角三角形三边的这种特殊的数量关系,那我们不妨大胆猜测在一般的直角三角形(在下图的方格纸中,每个方格的面积是1)中,这种特殊的数量关系也同样成立。
师生活动:学生独立思考后小组讨论,难点是如何证明求以斜边为边长的正方形的面积,可由师生共同总结得出可以通过割、补两种方法,求出其面积。
勾股定理教案范文 篇10
课题:
勾股定理
课型:
新授课
课时安排:
1课时
教学目的:
一、知识与技能目标理解和掌握勾股定理的内容,能够灵活运用勾股定理进行计算,并解决一些简单的实际问题。
二、过程与方法目标通过观察分析,大胆猜想,并探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。
三、情感、态度与价值观目标了解中国古代的数学成就,激发学生爱国热情;学生通过自己的努力探索出结论获得成就感,培养探索热情和钻研精神;同时体验数学的美感,从而了解数学,喜欢几何。
教学重点:
引导学生经历探索及验证勾股定理的过程,并能运用勾股定理解决一些简单的实际问题
教学难点:
用面积法方法证明勾股定理
课前准备:
多媒体ppt,相关图片
教学过程:
(一)情境导入
1、多媒体课件放映图片欣赏:勾股定理数形图,1955年希腊发行的一枚纪念邮票,美丽的勾股树,20xx年国际数学大会会标等。通过图形欣赏,感受数学之美,感受勾股定理的文化价值。
2、多媒体课件演示FLASH小动画片:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?已知一直角三角形的两边,如何求第三边?学习了今天的这节课后,同学们就会有办法解决了。
(二)学习新课问题一是等腰直角三角形的情形(通过多媒体给出图形),判断外围三个正方形面积有何关系?相传2500年前,毕达哥拉斯(古希腊著名的哲学家、数学家、天文学家)有一次在朋友家做客时,发现朋友家里用砖铺成的地面中反映了直角三角形三边的某种数量关系。你能观察图中的地面,看看能发现什么?对于等腰直角三角形有这样的性质:两直边的平方和等于斜边的平方那么对于一般的直角三角形是否也有这样的性质呢?请大家画一个任意的直角三角形,量一量,算一算。问题二是一般直角三角形的情形,判断这时外围三个正方形的面积是否也存在这种关系?通过这个观察和验算这个直角三角形外围的三个正方形面积之间的关系,同学们发现了什么规律吗?通过前面对两个问题的验证,可以得到勾股定理:如果直角三角形的两直角边长分别为a、b,斜边为c,那么a2+b2=c2。
(三)巩固练习1、如果一个直角三角形的两条边长分别是6厘米和8厘米,那么这个三角形的周长是多少厘米?2、解决课程开始时提出的情境问题。
(四)小结
1、背景知识介绍①《周髀算径》中,西周的商高在公元一千多年前发现了“勾三股四弦五”这一规律;②康熙数学专著《勾股图解》有五种求解直角三角形的方法,积求勾股法是他的独创。
2、通过这节课的学习,你会写方程了吗?你有什么收获和体会?
(五)作业练习18.1中的1、2、3题。板书设计:勾股定理:如果直角三角形的两直角边长分别为a、b,斜边为c,那么a2+b2=c2。